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Abstract

Slip-flow in rectangular microchannels heated at constant and uniform heat flux (H2 boundary condition) is studied. The study is
extended to the eight possible thermal versions that are formed of different combinations of heated and adiabatic walls. The paper aims
to show the effect of different thermal versions on heat transfer in microchannel. The velocity distribution that is required in determining
of temperature distribution is obtained from the literature. Mathematical similarity between the heat conduction and convection prob-
lems is used to determine the temperature distribution in the microchannel. The solution of a heat conduction problem, available in the
literature, is adapted to the heat convection problem in the microchannel. The velocity and temperature distributions thus found are used
to determine the average Nusselt number for all the eight thermal versions. For the case studied, it is found that rarefaction has a decreas-
ing effect on heat transfer in the microchannels exposed to any of the eight thermal versions. The results of the paper for the special case
of no-slip-flow agree exactly with the results found for macrochannels in the literature.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Slip-flow occurs if the flow pressure is very low or the
characteristic size of the flow system is small. Continuum
physics is no longer valid if the characteristic size of the
flow system is comparable to the molecular mean free path.
In no-slip-flow, as a requirement of continuum physics, the
flow velocity is zero at a fluid–solid interface and the fluid
temperature immediately adjacent to the solid walls is
equal to that of the solid walls. In the presence of slip-flow,
the flow velocity at the solid walls is nonzero and there is a
temperature jump (a finite difference between the tempera-
tures of solid wall and the adjacent fluid). These nonzero
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flow velocity and temperature jump at the solid walls are
major hydrodynamic and thermal effects that need to be
taken into account in slip-flow solutions.

Slip-flow solutions in microchannels may be investigated
for two cases; when the walls of the microchannel are
heated at constant and uniform temperature (H1 boundary
condition) and; when the walls of the microchannel are
heated at constant and uniform heat flux (H2 boundary
condition). In the literature, each of these cases may be
divided into eight sub-versions that are formed from differ-
ent combinations of heated and adiabatic walls. Morini
(2000) and Spiga and Morini (1996) have solved the flow
in macrochannels for all the eight thermal versions of the
H1 and H2 boundary conditions, respectively. Tunc and
Bayazitoglu (2002) have solved the slip-flow in microchan-
nels exposed to H2 boundary condition for the specific
case when all the walls of microchannel are heated at con-
stant and uniform heat flux. They determined the Nusselt

mailto:kuddusi@itu.edu.tr
mailto:cetegenedv@itu. edu.tr
mailto:cetegenedv@itu. edu.tr


Nomenclature

a long side of microchannel
A constant defined by Eq. (52)
b short side of microchannel
b1,b2,b3 constants defined by Eqs. (15)–(17)
cP specific heat
d1,d2,d3,d4 constants equal to 1 or 0
Dh hydraulic diameter
g heat generation function
�g transformed heat generation function defined by

Eq. (53)
h convection heat transfer coefficient
k thermal conductivity
K kernel
Kn Knudsen number
Lh heated perimeter of microchannel
Nu Nusselt number
p fluid pressure
P normalized pressure gradient
Pr Prandtl number
q heat flux
R specific heat ratio
S1,S2,S3,S4 constants introduced for simplicity defined

by Eqs. (25)–(28)
T temperature
T
_

nondimensional temperature
u fluid velocity

u
_

nondimensional fluid velocity
x,y,z nondimensional coordinates

Greek symbols

a thermal diffusivity
bm eigenvalues for the energy equation
bt dimensionless variable defined by Eq. (3)
bv dimensionless variable defined by Eq. (4)
c aspect ratio (b/a)
kmfp molecular mean free path
l dynamic viscosity
ln eigenvalues for the momentum equation
mn eigenvalues for the energy equation
q density
n,g,f coordinates

Subscripts

b bulk property
j index
m mean value
m index
n index
s fluid property near the wall
w wall value
0 inlet property
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number for various rarefaction intensities and microchan-
nel aspect ratios, and found that rarefaction has a decreas-
ing effect on the heat transfer. Ghodoossi and Egrican
(2005) solved the slip-flow in microchannels exposed to
H1 boundary condition for the specific case when all the
walls of the microchannel are heated at constant and uni-
form temperature. Similar heat transfer behaviors are
reported as those in the work of Tunc and Bayazitoglu
(2002).

In this paper, the slip-flow in microchannels exposed to
H2 boundary condition is studied for all the eight thermal
versions. The paper aims to show the effect of different
thermal boundary conditions on heat transfer in micro-
channel. Temperature distribution and Nusselt number
are determined. The results for the special case of zero rar-
efaction (solution for macrochannel) agree exactly with the
results of Spiga and Morini (1996) who solved the macro-
channel flow for the same eight thermal versions. Part of
the results for slip-flow regime, which is the main concern
of the paper, is in agreement with that of Tunc and Bayaz-
itoglu (2002) and Yu and Ameel (2002).
Fig. 1. The geometry of microchannel.
2. Problem statement

The problem under consideration is a hydrodynamically
and thermally developed steady flow in the rectangular
microchannel shown in Fig. 1. It is supposed that the
dimensions of the microchannel are comparable to the
molecular mean free path. According to the explanations
above, a slip-flow will occur in the microchannel. That is,
a nonzero flow velocity and a temperature jump will occur
at the walls of the microchannel. The properties of such a
slip-flow are quantified by the Knudsen number Kn, which
is defined as the ratio of the molecular mean free path to
the characteristic length of microchannel. According to
Beskok and Karniadakis (1992), no-slip-flow (flow in mac-
rochannels) occurs if the Knudsen number is lower than
0.001 and, the slip-flow (flow in microchannels) occurs if
the Knudsen number ranges from 0.001 to 0.1, which is
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the range of interest considered in this paper. That is, the
characteristic size of microchannels considered in the paper
is less than 100 lm if air with mean free path equal to
0.066 lm (at standard conditions) is the flowing fluid.

If the problem under consideration was a no-slip-flow,
the temperature of the flow near the wall, Ts, would be
equal to the wall temperature, Tw, and the velocity of the
flow near the wall, us, would be equal to zero. Since the
problem under consideration is a slip-flow, the temperature
of the flow near the wall is no longer equal to the wall tem-
perature and the velocity of the flow near the wall is no
longer zero. The temperature and velocity of the flow at
the bottom wall, first-order slip boundary conditions, are
given by Barron et al. (1997), as

T s ¼ T w þ btkmfp

oT
og

����
g¼0

ð1Þ

us ¼ bvkmfp

ou
og

����
g¼0

ð2Þ

where the parameters bv and bt are given as

bt ¼
2� F t

F t

2R
1þ R

1

Pr
ð3Þ

bv ¼
2� F v

F v
ð4Þ

The coefficients Fv and Ft are the tangential momentum
accommodation coefficient and the thermal accommoda-
tion coefficient, respectively. For real walls some molecules
reflect diffusively and some reflect specularly. These coeffi-
cients are defined as the fraction of molecules reflected dif-
fusively. Depending on the fluid, the solid and the surface
finish these coefficients vary from 0 to 1. However, for most
engineering applications, values for the accommodation
coefficients are near unity. The relations above are used
to calculate local temperature jump and slip velocity at so-
lid walls. The local values averaged over the heated peri-
meter of the microchannel are then used in the Nusselt
number calculation. It should be noted that the accuracy
of first-order slip boundary conditions begins to deteriorate
(Hadjiconstantinou, 2003; Hadjiconstantinou and Simek,
2002) around and beyond Kn = 0.1. An appropriate second
order slip model (Karniadakis and Beskok, 2002) may im-
prove the accuracy.

The H2 boundary condition can be applied to a rectan-
gular microchannel in eight different versions of heated (at
constant heat flux) and adiabatic walls. In the literature
(Morini, 2000; Spiga and Morini, 1996), these versions
are given as

4 version: Four walls are heated.
3L version: Three walls are heated, one short wall is
adiabatic.
3S version: Three walls are heated, one long wall is
adiabatic.
2L version: Two walls are heated, two short walls are
adiabatic.
2S version: Two walls are heated, two long walls are
adiabatic.
2C version: One short and one long wall are heated, the
other two walls are adiabatic.
1L version: One long wall is heated, the other three walls
are adiabatic.
1S version: One short wall is heated, the other three
walls are adiabatic.

The slip-flow in a microchannel with eight different H2
thermal versions above will be solved by applying the
Navier–Stokes equations.
3. Momentum equation

The f-direction momentum equation for a hydrodynam-
ically developed flow is

o2u

on2
þ o2u

og2
¼ 1

l
op
of

ð5Þ

The modified hydrodynamic boundary conditions accord-
ing to the slip-flow assumption are

u ¼ us at n ¼ 0; n ¼ a; g ¼ 0; g ¼ b ð6Þ

The momentum equation and the modified boundary con-
ditions are nondimensionalized by introducing the follow-
ing nondimentional variables

x ¼ n
a
; 0 6 x 6 1 ð7Þ

y ¼ g
a
; 0 6 y 6 c � b

a
ð8Þ

u
_ðx; yÞ ¼ uðn; gÞ

um
ð9Þ

where um represents the mean fluid velocity, which is de-
fined as

um ¼
1

ab

Z b

0

Z a

0

uðn; gÞ � dn � dg ð10Þ

The nondimensional momentum equation and associated
boundary conditions for hydrodynamically developed flow
are found as

o2 u
_

ox2
þ o2 u

_

oy2
¼ P ð11Þ

u
_ ¼ u

_
s at x ¼ 0; x ¼ 1; y ¼ 0; y ¼ c ð12Þ

where the normalized pressure gradient P is defined as

P ¼ a2

uml
op
of

ð13Þ

The momentum equation in slip-flow is already solved by
Tunc and Bayazitoglu (2002). Ghodoossi and Egrican



Table 1
The numerical values of coefficients di for the eight thermal versions

Version d1 d2 d3 d4

4 1 1 1 1
3L 1 0 1 1
3S 1 1 1 0
2L 0 0 1 1
2S 1 1 0 0
2C 1 0 1 0
1L 0 0 1 0
1S 1 0 0 0
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(2005) have applied a similar procedure to find an explicit
relation for velocity distribution as

u
_ðx; yÞ ¼ u

_
s

1þ ec
ðey þ ec�yÞ

þ
X1
n¼1

Kðln; yÞðb1elnx þ b2e�lnx � b3Þ ð14Þ

where

b1 ¼

ffiffiffi
2

c

s
P ½�ð�1Þn þ 1�

l3
n

�e�ln þ 1

eln � e�ln
ð15Þ

b2 ¼

ffiffiffi
2

c

s
P ½�ð�1Þn þ 1�

l3
n

eln � 1

eln � e�ln
ð16Þ

b3 ¼

ffiffiffi
2

c

s
½�ð�1Þn þ 1�

l3
n

P � l2
n

1þ l2
n

u
_

s

� �
ð17Þ

Kernels and eigenvalues for the boundary conditions of the
first kind are:

Kðln; yÞ ¼

ffiffiffi
2

c

s
sin lny ð18Þ

sin lnc ¼ 0; or; ln ¼
np
c

n ¼ 1; 2; 3; . . . ð19Þ

Using the velocity distribution found above, the nondimen-
sional slip velocity u

_
s and the normalized pressure gradient

P, which are still unknowns, may be determined. Eqs. (2)
and (10) may be written in terms of nondimensional vari-
ables, respectively, as

u
_

s ¼
2c
ð1þ cÞ bvKn

o u
_ðx; yÞ
oy

�����
y¼0

ð20Þ

1 ¼ 1

c

Z c

0

Z 1

0

u
_ðx; yÞ � dx � dy ð21Þ

where the Knudsen number Kn is defined as

Kn ¼ kmfp

Dh
ð22Þ

Combining Eqs. (14), (20) and (21) and solving simulta-
neously for the nondimensional slip velocity u

_
s and the

normalized pressure gradient P result in

u
_

s ¼
S3

S1

c

2 1þc
2cbvKn� 1�ec

1þec 1þ S3

S1

� �
� 4

c S2
S4

S2
� S3

S1

� �h i ð23Þ

P ¼ s
1

8S1

c2 � u
_

s
2ðec � 1Þc

1þ ec
þ 8S2

� 	
 �
ð24Þ
where

S1 ¼
X1
n¼1

2 tanh l2n�1=2� l2n�1

l5
2n�1

ð25Þ

S2 ¼
X1
n¼1

1

l2
2n�1ð1þ l2

2n�1Þ
ð26Þ

S3 ¼
X1
n¼1

2 tanh l2n�1=2� l2n�1

l3
2n�1

ð27Þ

S4 ¼ s
X1
n¼1

1

1þ l2
2n�1

ð28Þ
4. Energy equation

The energy equation for a thermally developed flow
is

o2T

on2
þ o2T

og2
¼ uðn; gÞ

a
oT
of

ð29Þ

The axial variation of fluid temperature for thermally
developed flow is approximated in the following form by
providing an energy balance for an arbitrary differential
df segment of the microchannel exposed to any of the eight
thermal versions.

oT
of
¼ qðd1bþ d2bþ d3aþ d4aÞ

qcP umab
ð30Þ

Note that heat enters the microchannel from the walls that
are not adiabatic for each thermal version. The coefficients
di equal 1 for non-adiabatic walls and 0 for adiabatic walls.
Various combinations of these numerical values associ-
ated with each of the eight thermal versions are given in
Table 1.

The energy equation is nondimensionalized by making
use of the nondimensional variables defined by Eqs. (7)–
(9) and the nondimentional temperature defined as

T
_

¼ T � T 0

ðqDh=kÞ ð31Þ

The nondimensional energy equation is found as

o2 T
_

ox2
þ o2 T

_

oy2
¼ G � u

_ðx; yÞ ð32Þ

where the values of constant G for the eight thermal ver-
sions are given in Table 2.



Table 2
The values of constant G for the eight thermal versions

Version 4 3L 3S 2L 2S 2C 1L 1S

G cþ1
c

� �2 ð1þcÞð2þcÞ
2c2

ð1þcÞð1þ2cÞ
2c2

1þc
c2

cþ1
c

1
2

1þc
c

� �2
1þc
2c2

1þc
2c
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5. Thermal boundary conditions

The walls of the microchannel are either adiabatic or
heated at a constant heat flux q. The thermal boundary
conditions for the thermal versions may be given in the fol-
lowing form in general:

�k
oT ðn; gÞ

on

� 	
n¼0

¼ d1 � q ð33Þ

k
oT ðn; gÞ

on

� 	
n¼a

¼ d2 � q ð34Þ

�k
oT ðn; gÞ

og

� 	
g¼0

¼ d3 � q ð35Þ

k
oT ðn; gÞ

og

� 	
g¼b

¼ d4 � q ð36Þ

Substituting appropriate combinations of the coefficients
di given in Table 1 in the equations above provides the
boundary conditions for the thermal versions.

The general form of the thermal boundary conditions
Eqs. (33)–(36) may be nondimensionalized as

� o T
_

ðx; yÞ
ox

" #
x¼0

¼ d1 �
1þ c

2c
ð37Þ

o T
_

ðx; yÞ
ox

" #
x¼1

¼ d2 �
1þ c

2c
ð38Þ

� o T
_

ðx; yÞ
oy

" #
y¼0

¼ d3 �
1þ c

2c
ð39Þ

o T
_

ðx; yÞ
oy

" #
y¼c

¼ d4 �
1þ c

2c
ð40Þ
6. Solution of the energy equation

The nondimensional energy equation (Eq. (32)) should
be solved subject to the boundary conditions given by
Eqs. (37)–(40). The nondimensional energy equation is
mathematically similar to the governing differential equa-
tion for a two dimensional steady state heat conduction
problem with variable heat generation in the field. The
solution for such a heat conduction problem exists in the
literature (Ozisik, 1968). The solution for the heat conduc-
tion problem will be adapted to the problem under study.
The procedure is explained below.

The governing nondimensional differential equation for
a steady state heat conduction in a finite rectangle
(0 6 x 6 1, 0 6 y 6 c) with variable heat generation
g(x,y) is given as

o2 T
_

ox2
þ o2 T

_

oy2
þ gðx; yÞ

k
¼ 0 ð41Þ
It is supposed that the heat generated in the field is dissi-
pated from the boundary surfaces into the surroundings
at a uniform and constant temperature. Therefore, the
boundary conditions may be given as

�k1
o T
_

ðx; yÞ
ox

þ h1 T
_

ðx; yÞ
" #

x¼0

¼ f1 ð42Þ

k2

o T
_

ðx; yÞ
ox

þ h2 T
_

ðx; yÞ
" #

x¼1

¼ f2 ð43Þ

�k3

o T
_

ðx; yÞ
oy

þ h3 T
_

ðx; yÞ
" #

y¼0

¼ f3 ð44Þ

k4

o T
_

ðx; yÞ
oy

þ h4 T
_

ðx; yÞ
" #

y¼c

¼ f4 ð45Þ

The solution of the heat conduction problem, defined by
Eqs. (41)–(45), is given by Ozisik (1968) as

T
_

ðx; yÞ ¼
X1
m¼0

X1
n¼0

Kðbm; xÞKðmn; yÞAðbm; mnÞ
b2

m þ m2
n

ð46Þ
where the kernels K(bm,x), K(mn,y) and the eigenvalues bm,
mn are given as

Kðbm; xÞ ¼ Nm cosðbmxÞ ð47Þ

Kðmn; yÞ ¼ Nn cosðmnyÞ ð48Þ

sinðb1Þ ¼ 0; or; b ¼ mp
1
; m ¼ 0; 1; 2; 3; . . . ð49Þ

sinðmcÞ ¼ 0; or; m ¼ np
c
; sn ¼ 0; 1; 2; 3; . . . ð50Þ

where

Nm ¼

ffiffi
2
1

q
m 6¼ 0ffiffi

1
1

q
m ¼ 0

8><
>: Nn ¼

ffiffi
2
c

q
n 6¼ 0ffiffi

1
c

q
n ¼ 0

8><
>: ð51Þ
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The constant A(bm,mn) is given as

Aðbm; mnÞ ¼
a
k

�gðbm; mnÞ

þ a
Kðbm; xÞ

k1

����
x¼0

�
Z c

y¼0

Kðmn; yÞ � f1 � dy

 �

þ a
Kðbm; xÞ

k2

����
x¼1

�
Z c

y¼0

Kðmn; yÞ � f2 � dy

 �

þ a
Kðmn; yÞ

k3

����
y¼0

�
Z 1

x¼0

Kðbm; xÞ � f3 � dx

( )

þ a
Kðmn; yÞ

k4

����
y¼c

�
Z 1

x¼0

Kðbm; xÞ � f4 � dx

( )
ð52Þ

where

�gðbm; mnÞ ¼
Z 1

x¼0

Z c

y¼0

Kðbm; xÞ � Kðmn; yÞ � gðx; yÞ � dx � dy

ð53Þ

The governing differential equation (Eq. (41)) and the
boundary conditions (Eqs. (42)–(45)) of the heat conduc-
tion problem will mathematically be identical to the gov-
erning differential equation (Eq. (32)) and the boundary
conditions (Eqs. (37)–(40)) of the heat convection problem
in the microchannel, respectively, by applying the following
adaptations into the heat conduction problem,

a ¼ k ¼ k1 ¼ k2 ¼ k3 ¼ k4 ¼ 1 ð54Þ
h1 ¼ h2 ¼ h3 ¼ h4 ¼ 0 ð55Þ

f1 ¼ d1 �
1þ c

2c
ð56Þ

f2 ¼ d2 �
1þ c

2c
ð57Þ

f3 ¼ d3 �
1þ c

2c
ð58Þ

f4 ¼ d4 �
1þ c

2c
ð59Þ

gðx; yÞ ¼ �G � u
_ðx; yÞ ð60Þ

Therefore, we may consider that the solution for the heat
conduction problem given by Eqs. (46)–(53) is also the
solution for heat convection problem in the microchannel,
provided the adaptations given by Eqs. (54)–(60) are imple-
mented into the solution.

The constant A(bm,mn) given by Eq. (52) is determined
below by implementation of the adaptations above. For
different combinations of the indices m and n, formed of
zero and nonzero values, the constant A(bm,mn) is found as

For m 5 0 and n 5 0,

Aðbm; mnÞ ¼
�8PN nNmG

P1
j¼1;even

j
pl2

j ðj
2�n2Þ

ðe�ljþelj�2Þ
ðl2

jþb2
mÞðe

lj�e�lj Þ ;

m;n¼ even

0; m;n¼ else

8>><
>>:

ð61Þ
For m = 0 and n 5 0,

Að0; mnÞ ¼

�2N m¼0N nG ec�1
ecþ1

u
_

s
1þm2

n
þ ðd3 þ d4ÞN m¼0N n

1þc
2c

�2
ffiffiffiffiffi
2c
p

N m¼0N nG
P1

j¼1;even

j
pðj2�n2Þ

� b1;j
elj�1

lj
� b2;j

e�lj�1
lj
� b3;j

� �
; n¼ even

2
666664
ðd3 � d4ÞN m¼0N n

1þc
2c ; n¼ odd:

h

8>>>>>>>>><
>>>>>>>>>:

ð62Þ
For m 5 0 and n = 0,

Aðbm;0Þ ¼
�8PN n¼0N mG

P1
j¼1;even

1
pjl2

j

ðe�ljþelj�2Þ
ðl2

jþb2
mÞðe

lj�e�lj Þ

þðd1 þ d2ÞN mN n¼0
1þc

2
; m¼ even

ðd1 � d2ÞNmN n¼0
1þc

2
; m¼ odd

8>>><
>>>:

ð63Þ
For m = 0 and n = 0 a special case occurs and the con-

stant A(0, 0) cannot be evaluated. This is consistent with
the H2 type boundary condition that results in a tempera-
ture distribution in the form of T

_

sðx; yÞ þ C, where C is a
constant. To be able to evaluate the constant C, an addi-
tional prescribed condition namely specified temperature
on the boundaries or in the flow field is required. The same
situation is investigated in the work of Spiga and Morini
(1996), who solved the same problem as in this paper but
for macrochannels. In the following section of the paper
we will show that the value of constant C does not affect
the heat transfer (Nusselt number) calculations in the
microchannel.

7. Determination of Nusselt number

Integrating the local nondimensional temperature of the
fluid at the walls along the heated walls, and averaging over
the nondimensional heated perimeter of the microchannel
gives the average nondimensional slip temperature T

_

s as

T
_

s¼
d1

R c
0 T
_

ð0;yÞdyþd2

R c
0 T
_

ð1;yÞdyþd3

R 1

0 T
_

ðx;0Þdxþd4

R 1

0 T
_

ðx;cÞdx
d1cþd2cþd3þd4

ð64Þ
If a no-slip-flow was considered, the nondimensional slip
temperature T

_

s calculated above would be equal to the
nondimensional wall temperature T

_

w. Eq. (1) may be non-
dimensionalized to get,

T
_

w � T
_

s ¼ �
2c

1þ c
btKn

o T
_

oy

�����
y¼0

ð65Þ

Since the heat flux imposed on the heated walls is the same
(Eqs. (37)–(40)), the nondimensional wall temperature may
be calculated on a single heated wall as

T
_

w ¼ T
_

s þ btKn ð66Þ

Determination of the Nusselt number also requires calcula-
tion of the bulk or average nondimensional fluid tempera-
ture, T

_

b, that is defined as



Table 4
Nusselt numbers for the 3L version

Kn c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

Nu Nu Nu Nu Nu

0.00 3.2710 3.1799 3.1040 3.0241 2.9449
0.02 3.1410 3.0227 2.9310 2.8470 2.7699
0.04 2.9419 2.8239 2.7337 2.6547 2.5847
0.06 2.7282 2.6206 2.5381 2.4673 2.4056
0.08 2.5232 2.4285 2.3553 2.2931 2.2397
0.10 2.3353 2.2531 2.1890 2.1348 2.0884

Table 5
Nusselt numbers for the 3S version

Kn c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

Nu Nu Nu Nu Nu

0.00 2.3572 2.5613 2.7286 2.8543 2.9449
0.02 2.2923 2.4623 2.5972 2.6975 2.7699
0.04 2.1889 2.3329 2.4438 2.5256 2.5847
0.06 2.0724 2.1958 2.2886 2.3565 2.4056
0.08 1.9553 2.0620 2.1407 2.1979 2.2397
0.10 1.8433 1.9363 2.0039 2.0527 2.0884

Table 6
Nusselt numbers for the 2L version

Kn c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

Nu Nu Nu Nu Nu

0.00 5.7955 5.2916 4.8447 4.4407 4.0878
0.02 5.1443 4.6881 4.3037 3.9682 3.6778
0.04 4.4977 4.1274 3.8160 3.5453 3.3101
0.06 3.9420 3.6492 3.4002 3.1824 2.9916
0.08 3.4833 3.2514 3.0514 2.8750 2.7188
0.10 3.1072 2.9216 2.7593 2.6146 2.4855

Table 3
Nusselt numbers for the 4 version

Kn c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

Nu Nu Nu Nu Nu

0.00 2.9249 2.9906 3.0522 3.0844 3.0930
0.02 2.8962 2.9180 2.9444 2.9546 2.9501
0.04 2.7745 2.7755 2.7840 2.7834 2.7740
0.06 2.6156 2.6077 2.6074 2.6019 2.5912
0.08 2.4481 2.4370 2.4326 2.4254 2.4148
0.10 2.2857 2.2741 2.2682 2.2606 2.2509
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T
_

b ¼
1

c

Z c

0

Z 1

0

u
_ðx; yÞ � T

_

ðx; yÞ � dx � dy ð67Þ

Evaluation of the double integrals above leads to

T
_

b ¼ T
_

b1 þ T
_

b2 þ T
_

b3 þ T
_

b4 ð68Þ

where

T
_

b1 ¼ 2u
_

sN m¼0N n
ec � 1

ec þ 1

X1
n¼2;odd
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n
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ð72Þ

With the nondimensional wall and bulk temperatures
known, the Nusselt number may now be determined. An
energy balance on the heated perimeter at a specified axial
cross section of microchannel leads to

q � Lh � df ¼ h � Lh � df � ðT w � T bÞ ð73Þ

The Nusselt number is calculated by

Nu ¼ h � Dh

k
ð74Þ

By combining Eq. (73) with Eq. (74), and after some
manipulation, the Nusselt number is

Nu ¼ 1

T
_

w � T
_

b

ð75Þ

It can easily be verified that in the calculations above if the
temperature T

_

ðx; yÞ is replaced by T
_

ðx; yÞ þ C the Nusselt
number (Eq. (75)) does not change.

8. Results

All the numerical calculations are carried out using the
Mathematica 5 package. Solutions are obtained for Pr =
0.6, R = 1.4, Fv = 1 and Ft = 1. A sensitivity analysis on
the number of terms in the infinite series indicates that
the effect of the terms for n higher than a few hundred dis-
appears. This allows calculating the infinite series with a
relatively low number of terms to provide the desired con-
vergence and accuracy level. The relatively fast conver-
gence of the series in the functions for velocity and
temperature distributions makes the computer solution
time efficient.

The Nusselt numbers calculated for the eight thermal
versions are given in Tables 3–10 as a function of aspect
ratio c and Knudsen number Kn. The Nusselt numbers
for the 4 version in Table 3 agree with the results of both
Tunc and Bayazitoglu (2002) and Yu and Ameel (2002)
who solved slip-flow in microchannel for the same thermal



Table 10
Nusselt numbers for the 1S version

Kn c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

Nu Nu Nu Nu Nu

0.00 0.9527 1.5871 2.0507 2.4066 2.6877
0.02 0.9264 1.5128 1.9246 2.2313 2.4683
0.04 0.8994 1.4405 1.8069 2.0737 2.2748
0.06 0.8731 1.3729 1.7003 1.9323 2.1047
0.08 0.8470 1.3090 1.6026 1.8061 1.9447
0.10 0.8219 1.2497 1.5141 1.6944 1.8247

Fig. 2. Variation of Nusselt number with aspect ratio for the 1L version
(Pr = 0.6, R = 1.4, Fv = 1, Ft = 1).

Table 7
Nusselt numbers for the 2S version

Kn c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

Nu Nu Nu Nu Nu

0.00 1.6640 2.5901 3.2334 3.7163 4.0878
0.02 1.6093 2.4451 2.9914 3.3842 3.6778
0.04 1.5445 2.2911 2.7552 3.0765 3.3101
0.06 1.4773 2.1422 2.5367 2.8018 2.9916
0.08 1.4118 2.0044 2.3422 2.5636 2.7188
0.10 1.3487 1.8781 2.1695 2.3563 2.4855

Table 8
Nusselt numbers for the 2C version

Kn c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

Nu Nu Nu Nu Nu

0.00 2.3775 2.3990 2.4185 2.4286 2.4312
0.02 2.2635 2.2701 2.2781 2.2811 2.2801
0.04 2.1331 2.1334 2.1359 2.1357 2.1332
0.06 2.0032 2.0009 2.0008 1.9992 1.9962
0.08 1.8807 1.8774 1.8761 1.8740 1.8710
0.10 1.7678 1.7643 1.7625 1.7602 1.7574

Table 9
Nusselt numbers for the 1L version

Kn c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

Nu Nu Nu Nu Nu

0.00 4.2351 3.7132 3.3003 2.9641 2.6877
0.02 3.7533 3.3238 2.9819 2.7017 2.4683
0.04 3.3350 2.9869 2.7053 2.4715 2.2748
0.06 2.9853 2.7019 2.4684 2.2720 2.1047
0.08 2.6946 2.4611 2.2657 2.0991 1.9447
0.10 2.4514 2.2567 2.0914 1.9488 1.8247
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version for developed and developing flow, respectively.
The Nusselt numbers for no-slip-flow in macrochannels
for all the eight thermal versions are determined by setting
Kn = 0. The first lines on the Tables 3–10 correspond to
this case. The Nusselt numbers found for no-slip-flow are
in exact agreement with those of Spiga and Morini (1996)
who have solved the same problem as in this paper but
for macrochannels. Note that the Nusselt numbers found
for the 3L and 3S, 2L and 2S, 1L and 1S, versions are equal
at c = 1, which is an expected situation. The numerical
results also show that at Kn = 0.10 (the upper limit for
slip-flow), for a given aspect ratio, the heat transfer in
the 2L version is higher that that for all other thermal
versions. The highest heat transfer is achieved in the 2L
version with the smallest aspect ratio. For each of the ther-
mal versions, a Nusselt number correlation in terms of
aspect ratio and Knudsen number can be given by making
use of the numerical values on Tables 3–10 for the purpose
of practical usages.

The data on Tables 3–10 show that the Nusselt number
for a microchannel with any aspect ratio decreases as the
Knudsen number increases, for all the thermal versions.
This means that rarefaction influences the heat transfer in
the negative direction. The higher the rarefaction, the lower
the heat transfer. From a geometrical point of view, this
simply means that as the characteristic size of a microchan-
nel decreases the heat transfer also decreases.

Heat transfer for the eight thermal versions may
increase, decrease, or remain unchanged with aspect ratio.
This is seen if the numerical values are given in graphical
form. Figs. 2 and 3 show the variation of Nusselt number
with aspect ratio for the 1L and 1S versions, respectively. It
is seen that the heat transfer decreases for 1L version and
increases for 1S version with increasing aspect ratio, which
is reasonable and expected from a physical point of view.
The rates of decrease for the 1L version and increase for
the 1S version with increasing aspect ratio are such that
they reach the same heat transfer rate at the upper limit
of aspect ratio namely c = 1, which is also expected since
the 1L and 1S versions become identical versions at
c = 1. All of the observed trends given for the 1L–1S cou-
ple hold, qualitatively, for the couples 2L–2S and 3L–3S,
too. The nature of the variation of heat transfer with aspect
ratio for the 4 and 2C versions is completely different from
the above mentioned couples. The heat transfer shows very
little change with aspect ratio for these versions, as seen in
Tables 3 and 8. It can be concluded that aspect ratio does



Fig. 3. Variation of Nusselt number with aspect ratio for the 1S version
(Pr = 0.6, R = 1.4, Fv = 1, Ft = 1).
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not affect the heat transfer strongly for 4 and 2C versions,
however, for 1L, 2L and 3L versions lower aspect ratios,
and for 1S, 2S and 3S versions higher aspect ratios,
enhance the heat transfer.

The temperature contours for the 3L and 2C thermal
versions are given in Figs. 4 and 5, respectively. The graphs
Fig. 4. Temperature contours for the 3L thermal version for c = 1 and
c = 0.6 (Pr = 0.6, R = 1.4, Fv = 1, Ft = 1).

Fig. 5. Temperature contours for the 2C thermal version for c = 1 and
c = 0.6 (Pr = 0.6, R = 1.4, Fv = 1, Ft = 1).
show constant T̂ and not T̂ þ C lines. That is, a constant
value has been dropped from the temperature values given
on the graphs. This obviously would not affect the mathe-
matical calculations if a thermal optimization of the micro-
channel is required. The temperature contours for each
thermal version are plotted for aspect ratios equal to 0.6
and 1 at Kn = 0.10. Note that the temperature contours
plotted in microchannels with aspect ratio equal to 1 for
the, 3L and 3S, 2L and 2S and 1L and 1S versions are iden-
tical with ninety degrees geometrical rotation, as expected.
The figures show that the hottest and coldest contour lines
are located closest and farthest to the heated walls, respec-
tively, which is supportive of the accuracy of the solution.
Finally, it is notable that the numerical data of Tables 3–10
and the temperature contours may be used to determine the
optimal geometrical and operational conditions for a
microchannel exposed to any of the eight thermal versions.
9. Conclusion

The thermal behavior of a hydrodynamically and ther-
mally developed flow in rectangular microchannels has
been analyzed. The continuum approach with the velocity
slip and temperature jump condition at the solid walls
is applied to develop a mathematical model of the flow
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phenomenon in the rectangular microchannel. A total of
eight different thermal boundary conditions that are
formed of different combinations of heated and adiabatic
walls is considered. The solution of the mathematical
model employs the velocity distribution available in the lit-
erature. Mathematical similarity between the heat conduc-
tion and convection problems is used to determine the
temperature distribution in the microchannel. The solution
of a heat conduction problem, available in literature, is
adapted to the heat convection problem in the microchan-
nel. The velocity and temperature distributions thus found
are used to determine the average Nusselt number for all
eight thermal versions. The solution method of the paper
is validated for all versions for no-slip-flow conditions,
and for a single thermal version (4 version) under slip-flow
conditions. The paper explores the effects of rarefaction
and aspect ratio on thermal character of flow in rectangular
microchannels exposed to the eight different thermal
boundary conditions. Numerical results are obtained for
the fixed values of physical properties (Pr = 0.6, R = 1.4)
and accommodation coefficients (Fv = 1,Ft = 1) that are
representative of most engineering applications. The results
show that the highest heat transfer is achieved in the micro-
channel with two heated long walls and two adiabatic short
walls (2L version). The decreasing effect of rarefaction on
heat transfer in microchannels, for all the thermal versions,
is established. The higher the rarefaction, the lower the
heat transfer. The numerical results also show that heat
transfer for the eight thermal versions may increase,
decrease, or remain unchanged with aspect ratio. In partic-
ular, heat transfer decreases for 1L, 2L and 3L versions,
increases for 1S, 2S and 3S versions and, remains approx-
imately unchanged for 4 and 2C versions with increasing
aspect ratio. The solution of the paper may be used to
determine the optimal geometrical and operational condi-
tions for a microchannel exposed to any of the eight ther-
mal versions.
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